WSD Method

Example 03: Moment capacity of a concrete beam

Problem
A reinforced concrete beam 300 mm wide has an effective depth of 600 mm. It is reinforced with 4-32 mm diameter bars for tension. f’c = 21 MPa and fy = 275 MPa. Find the moment capacity of the beam.
 

wsd-example-03-moment-capacity-beam.jpg

 

Example 02: Total compressive force in conrete

Problem
A rectangular reinforced concrete beam with width of 250 mm and effective depth of 500 mm is subjected to 150 kN·m bending moment. The beam is reinforced with 4 – 25 mm ø bars. Use alternate design method and modular ratio n = 9.

  1. What is the maximum stress of concrete?
  2. What is the maximum stress of steel?
  3. What is the total compressive force in concrete?

 

wsd-example-02-flexural-stresses-concrete-steel.jpg

 

Example 01: Required steel area of reinforced concrete

Problem
A rectangular concrete beam is reinforced in tension only. The width is 300 mm and the effective depth is 600 mm. The beam carries a moment of 80 kN·m which causes a stress of 5 MPa in the extreme compression fiber of concrete. Use n = 9.
1.   What is the distance of the neutral axis from the top of the beam?
2.   Calculate the required area for steel reinforcement.
3.   Find the stress developed in the steel.
 

wsd-example-01-unknown-steel-area.jpg

 

Reinforced Concrete Design by WSD Method

Working Stress Design is called Alternate Design Method by NSCP (National Structural Code of the Philippines) and ACI (American Concrete Institute, ACI).
 

Code Reference
NSCP 2010 - Section 424: Alternate Design Method
ACI 318 - Appendix A: Alternate Design Method
 

Notation

fc = allowable compressive stress of concrete
fs = allowable tesnile stress of steel reinforcement
f'c = specified compressive strength of concrete
fy = specified yield strength of steel reinforcement
Ec = modulus of elasticity of concrete
Es = modulus of elasticity of steel
n = modular ratio
M = design moment
d = distance from extreme concrete fiber to centroid of steel reinforcement
kd = distance from the neutral axis to the extreme fiber of concrete
jd = distance between compressive force C and tensile force T
ρ = ratio of the area of steel to the effective area of concrete
As = area of steel reinforcement

 

Subscribe to RSS - WSD Method