NSCP 2010

Example 02: Notched beam with concentrated load

Problem
A 150 mm by 300 mm wooden beam having a simple span of 6 meters carries a concentrated load P at its midspan. It is notched at the supports as shown in the figure. For this problem, all calculations are based on shear alone using the 2010 NSCP specification given below. Allowable shear stress of wood, Fv = 1.0 MPa.
 

ex-02-notched-beam.jpg

 

  1. If P = 30 kN, calculate the maximum allowable depth (millimeters) of notches at the supports.
    1. 88
    2. 62
    3. 238
    4. 212

     

  2. If the depth of notches is 100 mm, what is the safe value of P (kiloNewton) the beam can carry.
    1. 26.67
    2. 17.78
    3. 8.89
    4. 13.33

     

  3. If P = 25 kN and the depth of notches is 150 millimeters, what is the shear stress (MegaPascal) near the supports.
    1. 0.83
    2. 6.67
    3. 1.67
    4. 3.33

 

NSCP 2010 Section 616.4: Horizontal Shear in Notched Beams
When rectangular-shaped girder, beams or joists are notched at points of support on the tension side, they shall meet the design requirements of that section in bending and in shear. The horizontal shear stress at such point shall be calculated by:
 

$f_v = \dfrac{3V}{2bd'}\left( \dfrac{d}{d'} \right)^2$

Where:

$d$ = total depth of beam.
$d'$ = actual depth of beam at notch

 

Example 01: Safe uniform load for beam notched at tension side of support

Problem
A 75 mm × 150 mm beam carries a uniform load wo over the entire span of 1.2 m. Square notches 25 mm deep are provided at the bottom of the beam at the supports. Calculate the safe value of wo based on shear alone.

Allowable shear parallel to grain = 1.40 MPa
Allowable shear normal to grain = 1.85 MPa

 

ex-01-notched-beam-uniform-load.jpg

 

Notching on Beams

NSCP 2010
When rectangular-shaped girder, beams or joists are notched at points of support on the tension side, they shall meet the design requirements of that section in bending and in shear. The horizontal shear stress at such point shall be calculated by:
 

$f_v = \dfrac{3V}{2bd'}\left( \dfrac{d}{d'} \right)^2$

Where:

$d$ = total depth of beam.
$d'$ = actual depth of beam at notch.

 

Reinforced Concrete Design by WSD Method

Working Stress Design is called Alternate Design Method by NSCP (National Structural Code of the Philippines) and ACI (American Concrete Institute, ACI).
 

Code Reference
NSCP 2010 - Section 424: Alternate Design Method
ACI 318 - Appendix A: Alternate Design Method
 

Notation

fc = allowable compressive stress of concrete
fs = allowable tesnile stress of steel reinforcement
f'c = specified compressive strength of concrete
fy = specified yield strength of steel reinforcement
Ec = modulus of elasticity of concrete
Es = modulus of elasticity of steel
n = modular ratio
M = design moment
d = distance from extreme concrete fiber to centroid of steel reinforcement
kd = distance from the neutral axis to the extreme fiber of concrete
jd = distance between compressive force C and tensile force T
ρ = ratio of the area of steel to the effective area of concrete
As = area of steel reinforcement

 

Subscribe to RSS - NSCP 2010